
MAP27Com.ocx API Definition

Revision Date Author
A 24 September 1999 Chris King, HASCOM International

HASCOM International
15 Marloo Lane
Quinns Rocks

Western Australia, 6030
Copyright © 1999-2010

mailto:hascom@hascom.com.au?subject=Re:%20MAP27Com%20API
http://www.hascom.com.au/

Contents
METHODS..3

short OpenPort(LPCTSTR Port, short Baud, short Format);...3
BOOL ClosePort();..3
short RadioManagement(short Controls);...4
short Dial(short Prefix, short Ident, short CallDetails);...5
short Answer();..5
short Disconnect();...6
short SendStatus(short Prefix, short Ident, short StatusNum);..6
short SendData(short Prefix, short Ident, LPCTSTR Message);...6
short SendNpd(VARIENT Data);..6
BOOL ParseMap27Messages(short Enable);..7
short MaxMessageSize();..7
Short SendMap27Message(VARIENT Message);...7

EVENTS..8
Map27Link(short Connected);...8
RadioLink(short InService);..8
IncomingCall(short Prefix, short Ident, short CallDetails);...8
StatusDataProgress(short Cause);..9
CallSetup(short Cause);...10
CallCleared(short Cause);..11
ReceivedStatus(short Prefix, short Ident, short StatusNum);..11
ReceivedData(short Prefix, short Ident, LPTSTR Message);..11
ReceivedNpd(VARIENT Data);..11
SendDataResult(short Status);...12
Numbering(short FleetPrefix, short RadioIdent, short LowestIdent, short HighestIdent, BOOL
NumberingScheme);..12
ProtocolInfo(short Reason);...13
ReceivedMap27Message(short MessageId, VARIANT Message);...13
Log(LPCTSTR LogMessage);...13

Methods

short OpenPort(LPCTSTR Port, short Baud, short Format);

This method opens the serial port and initialises the MAP27 protocol.

Port should point to a string that defines the port to open. For example "COM1:".
Baud is the baud rate to use. For example 9600.
Format selects the data format to use. A value of 1 (the default) signifies 8 data bits, no
parity & one stop bit. A value of 2 signifies 7 data bits, even parity & one stop bit.

Returns 1 if successful. The return is –1 if the port could not be opened, -2 if the
communication timeouts could not be set, -3 if the communication format could not be set
and -4 if the receive thread could not be created.

BOOL ClosePort();

This method closes the serial port.

The return is TRUE if successful or FALSE if the port was not open.

short RadioManagement(short Controls);

This method allows configuration of the radio operating parameters according to the
MAP27 B3h message. Controls is a bit map of 8 flags in the lower byte as defined in section
5.2.2.8.7 of the MAP27 document:

CONTROLSa:
8 7 6 5 4 3 2 1

0 User does not wish to or is not capable of receiving voice calls

1 User wishes to receive voice calls

0 User does not wish to or unit is not capable of receiving modem calls

1 User wishes to receive modem calls

0 User does not wish or unit is not capable to receive status messages

1 User wishes to receive status messages

0 User does not wish or unit is not capable to receive SST messages

1 User wishes to receive SST messages

0 User does not wish or unit is not capable to receive MST messages

1 User wishes to receive MST messages

0 Radio shall not automatically set up calls to a diversion address

1 Radio shall automatically set up calls to a diversion address

0 Set call-back logging inactive

1 Set call-back logging active

* Reserved for further extensions, set to '0'

short Dial(short Prefix, short Ident, short CallDetails);

This method causes a MAP27 message to be sent to initiate a call. The Prefix and Ident
should be set to the MPT1327 ID for the radio to be called.

The CallDetails parameter specifies additional parameters. The high byte signifies the
MAP27 message to use, either A4h for a normal call or A5h for emergency call (A4h is
assumed if this value is zero). The low byte signifies the 'call details' as described in section
5.2.2.4 of the MAP27 protocol.

CALL DETAILS:
8 7 6 5 4 3 2 1

* Reserved, set to '0'

0 Non-include call

1 Include call

0 Individual or group call, called user(s) may reply

1 Group call, called users are not allowed to reply

0 Voice call

1 Modem (Data) call

0 High priority call

1 Non-priority call

0 0 0 Standard call

* * 1 Special customised service request

Others Reserved

For example, to generate a voice call use a CallDetails value of 08h or 18h for a NPD call.

The return is 0 if the CallDetails high byte is invalid else it is the same as for the
SendMap27Message method.

The outcome of the call attempt will be shown by either a CallSetup or ProtocolInfo event.

short Answer();

This method attempts to answer an incoming call by sending a Radio Control message
(B2h) with the 'off hook' bit set. The return is the same as for the SendMap27Message
method.

The outcome of the call attempt will be shown by either a CallSetup or ProtocolInfo event.

short Disconnect();

This method attempts to end a call by sending a Radio Control message (B2h) with the 'off
hook' bit cleared. The return is the same as for the SendMap27Message method.

The outcome of the call attempt will be shown by either a CallCleared or ProtocolInfo event.

short SendStatus(short Prefix, short Ident, short StatusNum);

This method uses a send status message (80h) to attempt to send StatusNum to the radio
identified by Prefix and Ident. The return is the same as for the SendMap27Message
method.

The outcome of the call attempt will be shown by either a StatusDataProgress, CallCleared
or ProtocolInfo event.

short SendData(short Prefix, short Ident, LPCTSTR Message);

This method uses a send data message (81h or 82h) to attempt to send Message to the radio
identified by Prefix and Ident. The return is the same as for the SendMap27Message
method.

The outcome of the call attempt will be shown by either a StatusDataProgress, CallCleared
or ProtocolInfo event.

short SendNpd(VARIENT Data);

This method uses a send NPD message (A3h) to attempt to send the binary information
contained in Data. A data call must previously have been established. The maximum
number of bytes that can be contained in Data is defined as the return value from the
MaxMessageSize method less one. The return is 0 if Data is invalid, otherwise it is the same
as for the SendMap27Message method.

The outcome of this message is not provided for in the MAP27 protocol, however there are
Tait specific messages that will provide this information. They cause a SendDataResult
event.

BOOL ParseMap27Messages(short Enable);

This function sets or clears a flag in the control. If the flag is set, all received MAP27
packets will cause a ReceivedMap27Message event.

When the flag is set the control first attempts to process received messages, at which time
events such as IncomingCall may occur, then the ReceivedMap27Message event is fired.
The flag is always initially cleared when the control is loaded.

Enable should be zero to clear the flag or non-zero to set the flag.

The return is the new state of the flag.

short MaxMessageSize();

During negotiation of a MAP27 link, both parties agree on a maximum packet size. This
method returns that size. If the link is not available, the return is 0. Note a typical return
value, as seen with the Tait T2040, is 112.

Short SendMap27Message(VARIENT Message);

This method sends a free format MAP27 message.

Message must contain an array of bytes (VT_ARRAY) that define a MAP27 packet. The
maximum number of bytes allowable is returned by the MaxMessageSize method. The
control will automatically add the protocol wrapper requirements such as checksums, etc.

The return is 1 if the message has been sent successfully and 2 if the message has been
queued to send. A return of 0 indicates Message is invalid, –1 signifies the MAP27 link is
not ready to transfer messages, –2 signifies that the data is too large for the link, -3 signifies
that the (5 message deep) transmit queue is full and the message will not be queued/sent.

For example, to request the status of the radio settings, Message should contain the two
bytes B0h 02H. Or, to send a status message 10 to radio 70 1522 Message should contain the
following bytes, 80h 46h 05h F2h 00h 0Ah.

Events

Map27Link(short Connected);

This event occurs whenever a MAP27 link is successfully negotiated or when a link is lost.
The value of Connected is non-zero if a link has been negotiated or zero if it has been lost.

RadioLink(short InService);

This event occurs whenever the radio reports the status of it's connection to the network has
changed. The radio is also polled automatically causing this event after successful MAP27
link negotiation. The value of InService is non-zero if the radio is in contact or zero if it is
not.

IncomingCall(short Prefix, short Ident, short CallDetails);

This event occurs whenever the radio receives an incoming call. Prefix & Ident identify the
calling radio. CallDetails contains the call type in the high byte (A4h for normal call & A5h
for emergency call). The low byte contains the call details as described in the MAP27
document section 5.2.2.4.4/5

CALL DETAILS:
8 7 6 5 4 3 2 1

* Reserved, set to '0'

0 Non-include call

1 Include call

0 Individual call

1 Group call

0 Voice call

1 Data call

0 Call has been connected (Hook signal is not needed) (GTC)

1 Hook signal is required before connection is established (AHY)

0 0 0 Standard call, no parameters field

0 0 1 Reserved

0 1 0 Reserved

0 1 1 Reserved

1 0 0 Reserved

1 0 1 Customised service 1 indication

1 1 0 Customised service 2 indication

1 1 1 Customised service 3 indication

Others Reserved

StatusDataProgress(short Cause);

This event is caused during transmission of a status or data message (not NPD) to show the
progress of the transmission. Cause shows the message type in the high byte (C0h for
successful transmission, D0h for queuing and E0h for unsuccessful). And the cause is in the
low byte as documented in the MAP27 protocol section 5.2.2.1.3.

CAUSE for Message type C0h:
8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 ACK Successful transaction

CAUSE for Message type D0h:

0 0 0 0 0 0 1 0 ACKQ System busy, wait for signalling

0 0 0 0 1 0 1 0 ACKQ Called unit engaged, wait for signalling

0 0 1 0 0 1 1 0 ACKT Called unit's calls are diverted and radio unit
tries to send message to the diversion address

CAUSE for Message type E0h:

0 0 0 0 1 0 0 0 ACK Transaction aborted

0 0 0 0 0 0 1 1 ACKX Invalid call, message rejected

0 0 0 0 1 0 1 1 ACKX System or called unit overload, message
rejected

0 0 0 0 0 1 0 0 ACKV Called radio out of reach or transaction
abandoned

0 0 0 0 1 1 0 0 ACKV Called unit engaged or does not wish to accept
message

0 0 0 0 0 1 1 0 ACKT Called unit's calls are diverted

0 0 0 1 0 1 1 0 ACKT Called unit's calls are diverted to a group
address

0 0 0 0 1 1 1 0 ACKT Called unit's calls are diverted, but the diversion
address is not available

CallSetup(short Cause);

This event shows the progress of an attempt to set up or receive a call. The high byte of
Cause shows the message type (C4h is setup positive, D4h is setup queuing, E4h is setup
negative, C5h receive positive, D5h receive warning, E5h receive not connected). And the
cause is in the low byte as documented in the MAP27 protocol section 5.2.2.4.3.

CAUSE for Message type C4h:
8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 GTC Call connected

0 0 0 0 0 0 0 0 ACK Include call connected

CAUSE for Message type D4h:

0 0 0 0 0 0 0 1 ACKI Called unit alerting

0 0 0 0 0 0 1 0 ACKQ System busy, wait for signalling

0 0 0 0 1 0 1 0 ACKQ Called unit engaged, wait for signalling

0 0 0 0 0 1 0 1 ACKE Emergency call is proceeding, wait for signalling

0 0 1 0 0 1 1 0 ACKT Called unit's calls are diverted and radio unit tries to
set-up call to the diversion address

0 0 1 1 0 1 1 0 ACKT Called unit's calls are diverted to a group and radio unit
tries to set-up call to the diversion address

CAUSE for Message type E4h:

0 0 0 0 1 0 0 0 ACK Call set-up aborted

0 0 0 0 0 0 1 1 ACKX Invalid call, call set-up rejected

0 0 0 0 1 0 1 1 ACKX System or called unit overload, call set-up rejected

0 0 0 0 0 1 0 0 ACKV Called radio out of reach or call set-up abandoned

0 0 0 0 1 1 0 0 ACKV Called unit engaged or user does not wish to accept
the call

0 0 0 0 0 1 1 0 ACKT Called unit's calls are diverted

0 0 0 1 0 1 1 0 ACKT Called unit's calls are diverted to a group address

0 0 0 0 1 1 1 0 ACKT Called unit's calls are diverted, but the diversion
address is not available

0 0 0 0 0 1 1 1 ACKB Called unit has accepted the call for call-back

CallCleared(short Cause);

This event occurs whenever a call is ended. The high byte of Cause contains the message
type (86h is cleared normal & A6h is cleared abnormal). And the cause is in the low byte as
documented in the MAP27 protocol section 5.2.2.6.2

CAUSE for message type A6h:
8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 CLEAR
MAINT
Local

Not specified, all message transactions, call set-
ups or calls are cancelled or disconnected

0 0 0 0 0 0 0 1 Local Radio generated clear e.g. radio path protocol
time-out or on-hook on the radio set

0 0 0 0 0 1 0 0 Local Service not available (Radio unit not in radio
contact)

0 0 0 0 0 1 0 1 Local Transmission or message too long, call
disconnected or message rejected

0 0 0 0 0 1 1 0 Local Message coding not possible, message rejected

0 0 0 0 1 1 1 0 MAINT
(110)

Voice or modem call disconnected, abnormal
end

CAUSE for message type 86h:
0 0 0 0 1 0 1 1 CLEAR Voice or modem call disconnected, normal end

.

ReceivedStatus(short Prefix, short Ident, short StatusNum);

This event is generated when the radio receives a status message. Prefix & Ident identify the
sending radio and StatusNum is the status number received.

ReceivedData(short Prefix, short Ident, LPTSTR Message);

This event is generated when the radio receives a data message. Prefix & Ident identify the
sending radio and Message is the received text (7 bit or 8 bit ascii is assumed).

ReceivedNpd(VARIENT Data);

This event is generated when the radio receives a NPD message during a data call. Data
contains the bytes received in an array of bytes.

SendDataResult(short Status);

This event is generated when the radio sends a Tait specific MAP27 message showing the
progress of a NPD data transmission. The high byte of Status contains the message type
(C1h is successful, D1h is queuing & E1h is unsuccessful). And the low byte contains the
cause as documented by Tait.

CAUSE for Message type C1h:
8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 Successful transmission

CAUSE for Message type D1h:

0 0 0 0 0 0 1 0 Data Queued

CAUSE for Message type E1h:

0 0 0 0 0 0 0 1 TDP format mismatch

0 0 0 0 0 0 1 0 Internal modem has failed

0 0 0 0 0 1 0 0 Data channel failure

0 0 0 0 1 0 0 0 Invalid data packet size

0 0 0 1 0 0 0 0 Data channel timeout

0 0 1 0 0 0 0 0 Modem busy

0 1 0 0 0 0 0 0 Transmission aborted

Numbering(short FleetPrefix, short RadioIdent, short LowestIdent, short
HighestIdent, BOOL NumberingScheme);

After a successful link negotiation, the control automatically requests the radio numbering
information. The FleetPrefix is the Prefix of the fleet to which the radio belongs, RadioIdent
is the ident of the attached radio. LowestIdent & HighestIdent are the limits of individual
idents in the fleet. NumberingScheme is FALSE for small fleets (which use 2 digit short
dialing) and TRUE for large fleets (which use 3 digit short dialing).

This information can help with making calls within the same fleet as the lowest short dial ID
is always 20 or 200 therefore to dial radio 32, use the FleetPrefix and add 12 to the
LowestIdent.

ProtocolInfo(short Reason);

This event occurs when the radio sends a protocol information message via the MAP27 link.
This is usualy to inform the DTE of some protocol error or to advise that some requested
function is unsupported. Reason containts the reason for the message as documented in the
MAP27 protocol section 5.2.2.8.9.

REASON:
8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 1 Unrecognised message

0 0 0 0 0 0 1 0 Facility or addressing not supported

0 0 0 0 0 0 1 1 Protocol state mismatch detected i.e. received message not
compatible or allowed at the present state (optional)

0 0 0 0 0 1 0 0 Message coding not supported

1 * * * * * * * Spare for customisation

Others Reserved

ReceivedMap27Message(short MessageId, VARIANT Message);

This method is fired when a MAP27 packet is received. The ParseMap27Messages method
must previously have been called to set the flag. The MessageId has the same value as the
first byte contained in the Message, this is to allow filtering of messages without incurring
the variant processing overhead.

Log(LPCTSTR LogMessage);

This event provides text log messages, useful for debugging or providing extra information
to the user.

	Methods
	short OpenPort(LPCTSTR Port, short Baud, short Format);
	BOOL ClosePort();
	short RadioManagement(short Controls);
	short Dial(short Prefix, short Ident, short CallDetails);
	short Answer();
	short Disconnect();
	short SendStatus(short Prefix, short Ident, short StatusNum);
	short SendData(short Prefix, short Ident, LPCTSTR Message);
	short SendNpd(VARIENT Data);
	BOOL ParseMap27Messages(short Enable);
	short MaxMessageSize();
	Short SendMap27Message(VARIENT Message);

	Events
	Map27Link(short Connected);
	RadioLink(short InService);
	IncomingCall(short Prefix, short Ident, short CallDetails);
	StatusDataProgress(short Cause);
	CallSetup(short Cause);
	CallCleared(short Cause);
	ReceivedStatus(short Prefix, short Ident, short StatusNum);
	ReceivedData(short Prefix, short Ident, LPTSTR Message);
	ReceivedNpd(VARIENT Data);
	SendDataResult(short Status);
	Numbering(short FleetPrefix, short RadioIdent, short LowestIdent, short HighestIdent, BOOL NumberingScheme);
	ProtocolInfo(short Reason);
	ReceivedMap27Message(short MessageId, VARIANT Message);
	Log(LPCTSTR LogMessage);

